If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-10=30
We move all terms to the left:
6x^2-10-(30)=0
We add all the numbers together, and all the variables
6x^2-40=0
a = 6; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·6·(-40)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*6}=\frac{0-8\sqrt{15}}{12} =-\frac{8\sqrt{15}}{12} =-\frac{2\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*6}=\frac{0+8\sqrt{15}}{12} =\frac{8\sqrt{15}}{12} =\frac{2\sqrt{15}}{3} $
| 7=8w-11 | | -h-(-23)=-60 | | -6q-2=3q | | 1.73^x=2 | | 10-8=4x-6x | | -.05x+x=1.52 | | -2(x-2.5=) | | -5(4x-3)+3=-20x+18 | | 34=n+19 | | 1=d/5-4 | | -1.4-6x=26.8 | | 8k-32=4k+4 | | 67=25^x | | 25-4q=17 | | 95=-8(2r-7)+3r | | (2y+1)/3=(y-1)/2 | | 3-11=9+5+n | | 10(8c-1)-8=78c+10 | | 2/3h=10.6 | | 3b+12=87 | | (2y+1)/3=(y−1)/2 | | 5/6*x=20 | | -10(x+4)+56=-12-2 | | (4w+3)(7-w)=0 | | h/4+53=61 | | x(8x+16)=10 | | 21/x=12/16 | | x1/3=x | | x=4/3x3-2x2+10 | | 9x+15-8x=-3-13 | | 2/5y=5 | | 8=28-4v |